Article:A Systematic Review of Methods for Handling Missing Variance Data in Meta-Analyses of Interventions in Type 2 Diabetes Mellitus. (5066955)

From ScienceSource
Jump to: navigation, search

This page is the ScienceSource HTML version of the scholarly article described at Its title is A Systematic Review of Methods for Handling Missing Variance Data in Meta-Analyses of Interventions in Type 2 Diabetes Mellitus. and the publication date was 2016-10-17. The initial author is Sarah Batson.

Fuller metadata can be found in the Wikidata link, which lists all authors, and may have detailed items for some or all of them. There is further information on the article in the footer below. This page is a reference version, and is protected against editing.

Converted JATS paper:

Journal Information

Title: PLoS ONE

A Systematic Review of Methods for Handling Missing Variance Data in Meta-Analyses of Interventions in Type 2 Diabetes Mellitus

Alternative Title: Methods for Handling Missing Variance Data in Meta-Analysis

  • Sarah Batson
  • Hannah Burton

DRG Abacus, Bicester, United Kingdom

  • James M Wright (Editor)

University of British Columbia, CANADA

Publication date (epub): 10/2016

Publication date (collection): /2016



Meta-analysis is of critical importance to decision makers to assess the comparative efficacy and safety of interventions and is integral to health technology assessment. A major problem for the meta-analysis of continuous outcomes is that associated variance data are not consistently reported in trial publications. The omission of studies from a meta-analysis due to incomplete reporting may introduce bias. The objectives of this study are to summarise and describe the methods used for handling missing variance data in meta-analyses in populations with type 2 diabetes mellitus (T2DM).


Electronic databases, Embase, MEDLINE, and the Cochrane Library (accessed June 2015), were systematically searched to identify meta-analyses of interventions in patients with T2DM. Eligible studies included those which analysed the change in HbA1c from baseline.


Sixty-seven publications reporting on meta-analyses of change in HbA1c from baseline in T2DM were identified. Approaches for dealing with missing variance data were reported in 41% of publications and included algebraic calculation, trial-level imputation, and no imputation.


Meta-analysis publications typically fail to report standardised approaches for dealing with missing variance data. While no particular imputation method is favoured, authors are discouraged from using a no-imputation approach. Instead, authors are encouraged to explore different approaches using sensitivity analyses and to improve the quality of reporting by documenting the methods used to deal with missing variance data.



Meta-analysis is of critical importance for decision makers to assess the comparative efficacy and safety of interventions and is becoming an increasingly important component of health technology assessment. Indirect comparison and network meta-analyses are used to assess the comparative efficacy and safety of interventions in the absence of randomised controlled trials (RCTs) comparing these interventions. The most common method for analysing continuous outcomes in meta-analysis is to base the analysis on the mean change from baseline and an appropriate level of uncertainty such as the standard deviation (SD) [[1]]. A major problem for the meta-analysis of continuous outcomes is that trial publications do not consistently report the SDs for change in outcomes from baseline [[2]]. There is no empirical evidence exploring the reasons for missing SDs in RCTs but previous studies have reported that greater than 90% of studies report incomplete efficacy outcomes [[3], [4]]. In addition, these studies concluded that statistically significant trial efficacy results have statistically significantly higher odds of being fully reported in trial publications compared with non-significant results [[3], [4]]. The association of incomplete reporting of outcomes with statistical significance is of concern for meta-analysis. The omission of studies from a meta-analysis due to incomplete reporting may introduce bias and reduce statistical power.

The Cochrane handbook outlines methods of algebraic calculations for estimating the SD using alternative parametric summary statistics (p-values, confidence intervals [CIs], standard errors [SEs]) which may be reported in trial publications instead [[5]]. Algebraic calculation methods rely on reported parametric summary statistics with the assumption that they have approximate distributions. The statistical significance of hypothesis tests may not be reported as an exact value but instead in various ways, such as an upper bound or critical p-value. In practice a critical or upper-bound p-value (i.e. p<0.01) may be used as an approximation to compute the SD. This represents a conservative approach to quantifying uncertainty [[5]]. In practice many primary study publications fail to report any adequate measures of uncertainty around the change from baseline of continuous outcomes [[3], [4]] and, therefore, alternative methods for handling missing variance data are required.

Although it is recommended that authors are contacted for missing data, in practice they rarely respond. In the event that no measures of uncertainty are reported there are a number of methods for variance imputations reported in the literature [[5][10]]. A previous systematic review by Wiebe et al. highlighted that missing SDs is a widespread problem and that there is a lack of standardisation in the methods for handling missing variance data in meta-analysis [[10]]. This is likely a result of the lack of clear guidance in the Cochrane handbook or NICE technical support documents regarding the ‘gold standard’ approach to imputation.

Meta-analyses for type 2 diabetes mellitus (T2DM) are of particular interest because of the rising prevalence of the disease and the increasing burden on global healthcare resources. The demand for meta-analyses of diabetes therapies has grown over recent years due to the emergence of novel agents. The primary measure of control in T2DM is the change in HbA1c levels from baseline, which represents a relevant continuous outcome. This study aims to present a current review of the methods used to address missing SDs in meta-analysis of continuous outcomes in T2DM.


Search strategy

Electronic databases were searched on 4 June 2015 (Embase; MEDLINE® In-Process & Other Non-Indexed Citations; Ovid MEDLINE; Cochrane Library [Cochrane Central Register of Controlled Trials; Cochrane Database of Systematic Reviews; Database of Abstracts of Reviews of Effects; Cochrane Library Health Technology Assessment]) [S1 Table, supporting information]. Two reviewers independently screened the titles and abstracts of identified citations using pre-specified eligibility criteria; potentially relevant citations were then screened based on the full publication to identify pertinent studies for inclusion. Disagreements were resolved through discussion until a consensus was reached or via the involvement of a third reviewer where necessary.

Inclusion and exclusion criteria are summarised in Table 1.

10.1371/journal.pone.0164827.t001Table 1

Inclusion and exclusion criteria.

Include Exclude
Study design Meta-analysis Economic evaluations, cost studies, QoL studies, clinical trials, pooled analyses only and reviews/editorials
Disease/Population T2DM T1DM, any other disease and non-human studies
Intervention Any pharmacological treatment for T2DM Dietary supplements, dietary treatments and non-pharmacological management
Outcomes Continuous HbA1c outcomes No continuous HbA1c outcomes reported
Publication type Full papers or abstracts Protocol only
Language English Non-English language publications
Year of publication 2013 to present Published before 2013

Abbreviations: QoL, quality of life; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus

Inclusion criteria

A publication was included if it detailed a standard pair-wise meta-analysis, indirect comparison or network meta-analysis of change in HbA1c in patients with T2DM, and it also assessed the use of a pharmacological intervention for treatment or management of T2DM. In order to obtain a reasonable study sample size of only the most recent studies to reflect the current practices, only English language publications published from 2013 onwards were considered.

Exclusion criteria

Publications were excluded if the patient population did not have T2DM or the interventions assessed in the meta-analysis were dietary supplements or non-pharmacological management strategies, such as diet and exercise therapy.

Data extraction

Data extraction was performed into an extraction template and verified by a second extractor. Disagreements were discussed with a third party.


A total of sixty-seven publications reporting a meta-analysis of change in HbA1c from baseline in T2DM patient populations were identified. The study flow diagram is shown in Fig 1.

10.1371/journal.pone.0164827.g001Fig 1

Study flow diagram.

A completed PRISMA checklist can be found in S2 Table. Thirty-nine (58%) of these publications did not report any approaches for dealing with missing variance data. Methods for handling missing variance data were reported in twenty-eight studies (42%) and are classified as algebraic recalculation, trial-level imputation, and no-imputation (Table 2).

10.1371/journal.pone.0164827.t002Table 2

Summary of approaches to dealing with missing variance data across the included studies.

Approach Method reported Publication Count (%)
Not reported (n = 39) No methods for handling missing data reported 39/67 (58)
Algebraic calculation Computed from SE, 95% CIs or p-values 12/67 (18)
Trial-level imputation Imputing SD using correlation coefficient of 0.5 4/67 (6)
Imputing SD using correlation coefficient of 0.4 1/67 (1)
Imputed values from a comparable study of the same treatment arms 1/67 (1)
SDs were not reported, they were imputed by averaging reported SDs from other trials in the same comparison. 1/67 (1)
SDs imputed using Cochrane methods 2/67 (3)
Imputation from trial arms from the same drug class, using the prognostic method proposed by Ma et al., 2008 [[6]] 2/67 (3)
Estimated by calculating the mean value of reported variances across main studies 1/67 (1)
Data imputed but no methods reported 1/67 (1)
No imputation Studies excluded from meta-analysis if insufficient information provided to enable SE calculation 4/67 (6)
Contacted authors Attempts to contact author if data concerning outcome was missing 3/67 (5)

Abbreviations: CI, confidence interval; SD, standard deviation; SE, standard error

N.B a number of publications detailed both algebraic calculation and trial-level imputation

Algebraic calculations

Twelve publications (18%) reported computation of SD from parametric summary statistics [[11][22]]. Six of these studies (9%) described the use of algebraic calculations but did not detail any further strategies for handling missing variance data [[11][16]]. A further six publications (9%) described the use of algebraic calculations and further strategies for imputation of missing SDs [[17][22]]. The following statistics were suggested for use across the publications: SEs, 95% CIs and p-values. None of the publications reported sufficient detail to assess which summary statistics were used in the calculations or to validate the calculations.

Trial-level imputation

It is possible to calculate missing SDs with an imputed value of a correlation coefficient if baseline and final SDs are known [[5]]. Five studies (7%) reported imputing SDs using a correlation coefficient [[18], [23][26]]. The value used for the correlation coefficient may be imputed from another study, or alternatively a conservative estimate of 0.5 is recommended [[1], [5]]. Four of the studies (6%) reported that a correlation coefficient of 0.5 was used [[18], [23], [25], [26]]. A single study reported that a correlation coefficient of 0.4 was employed, which appeared to be obtained using data from previous meta-analyses, though this was not explicitly stated [[24]].

A single study imputed the SD from a comparable trial using the same treatment interventions [[22]]. Two studies (3%) reported imputing SDs by averaging across trials, although different approaches regarding study selection were implemented: i) averaging across all other ‘main’ studies [[27]] or ii) averaging across other trials of the same treatment comparisons [[28]].

Two studies (3%) [[19], [21]] reported the use of imputation methods outlined in the Cochrane handbook [[5]]. The potential imputation methods provided by Cochrane include using a correlation coefficient, borrowing values from one or more studies in the same meta-analysis or from another meta-analysis, or a more sophisticated method (such as linear regression) [[8]]. A single study [[29]] used a prognostic method which predicts missing SEs from known SEs using a previously published equation [[6]]. A single study which used a trial-level imputation approach to handle missing variance data reported a sensitivity analysis of the approximations by performing a no-imputation approach [[28]].


Four studies (6%) excluded trials from their meta-analysis if there was insufficient information for algebraic calculation of SD [[30][33]]. None of the studies discussed the limitations and potential bias introduced by this approach in the publications.

Three studies reported attempts to contact authors for missing data but it was unclear if these attempts were successful and, if not, if other approaches (such as imputation) were explored [[17], [34], [35]].

Sensitivity analyses

Three publications (4%) [[23], [28], [36]] detailed sensitivity analyses examining the impact of trial-level imputation approaches on analysis results; of these, one study did not clearly describe the sensitivity analyses performed or the results [[36]]. Another study fully reported that two sensitivity analyses were performed by assuming correlation coefficients of either 0.25 or 0.75, concluding that the different correlation coefficients did not change the results of the analysis [[23]]. A further study performed a sensitivity analysis which excluded the trials that did not report SD and concluded that the results of this analysis were broadly similar with the base case analysis [[28]].


A high proportion (58%) of recently reported meta-analysis publications in T2DM fail to report approaches to dealing with missing variance data for continuous outcomes. The majority of publications (42%) which do report a strategy for dealing with missing SDs are inconsistent or not comprehensive regarding the methods used for meta-analysis. The lack of transparency in approaches to handle missing variance data may in part be due to journal restrictions and a historical paucity regarding the standardisation and reporting of imputation methods.

Algebraic recalculation was stated in 18% of the identified meta-analysis publications, although it is expected that the large majority of the included studies will have used this approach given that the methods are outlined within the Cochrane handbook [[5]]. It was unclear if actual p-values were used in the algebraic calculations or if upper bound, critical, or non-significant p-values were employed in approximate algebraic recalculations. It is worth noting that such approximations are conservative and will result in larger SDs and a reduced weighting of that particular study in the meta-analysis [[10]].

The trial-level imputation methods identified in this review can be considered as relatively basic and included direct substitution, arithmetic mean substitution, and the imputation of correlation. There are other methods of imputation in the literature which were not applied in the identified studies. These methods include, but are not limited to, study level imputations from parametric summaries, regression with covariates, and coefficient of variation [[10]]. In addition, none of the methods identified in this review incorporated uncertainty associated with imputation. Multiple imputation is the only method which accounts for the implicit uncertainty from the missing SDs [[9], [10], [37]]. The findings of this study suggest that the choice of approach is based upon the simplicity and accessibility of methods with authors avoiding the use of other complex methods reported in the literature [[9], [10], [37]].

When missing SDs are imputed, some form of sensitivity analysis should be conducted to assess the robustness of the results of the analysis in relation to the assumptions made and as verification for the use of imputation. Few studies (4%) reported conducting sensitivity analyses surrounding the methods of imputation; those which did concluded that the results of the analyses were robust to the assumptions made. None of the studies explored sensitivity of the analyses to different methods of imputing the estimates of variance. However, three previous studies suggest that alternative methods for imputing estimates of variance do not alter the conclusions of a meta-analysis, although the generalisation of these findings to other meta-analyses is unknown [[7], [38], [39]].

As with all reviews, the current analysis was subject to limitations. A review is only as robust as the data supporting it; therefore, a main limitation of this research was poor reporting regarding the methods for handling missing variance data in the identified publications. Only English language publications were considered and there was no hand searching of grey literature. Only meta-analyses in T2DM were considered and the applicability of the results across other disease areas is unknown. However, we have no reason to believe the findings of this review wouldn’t be generalisable to meta-analyses of continuous outcomes, regardless of therapeutic area. The prevalence statistics obtained may be limited due to the relatively small sample of included studies (n = 67). Empirical work to compare methods to address missing variance data is beyond the scope of the review but further research to test the impact of the different approaches is recommended.

This study presented a review of the current methods used to address missing SDs in the meta-analysis of change in HbA1c in T2DM. The date restrictions of the literature searches have ensured that this review is representative of the most current practices used by authors to address missing variance data in meta-analysis. It is expected that this research represents the only published review of methods to deal with missing variance data focusing on a single therapeutic area. The use of a specific research question in a focused population facilitated data acquisition. The presented results are broadly consistent with the previous Wiebe et al. review, conducted over a decade ago, with searches performed in 2002 and no restriction regarding dates or the therapeutic area. The lack of standardisation of methods to address missing variance data appears to remain, although the current review identified a narrower range of methods used for variance imputation compared with those outlined in Wiebe at al. [[10]]. The brief guidelines on selecting a method for handling missing data set out by Wiebe at al. still represent a logical and systematic approach [[10]]. Further to this, authors are discouraged from using the no-imputation approach and are instead encouraged to improve the quality of reporting of their research. Sensitivity analyses are also encouraged and, as no method of imputation is known to be absolutely superior to another, exploration of different methods of imputation are desirable.

Supporting Information

S1 Table

Electronic literature searches.


Click here for additional data file.

S2 Table

PRISMA checklist.


Click here for additional data file.


  1. S Dias, N.J. Welton, A.J. Sutton & A.E Ades. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. 2011.
  2. DL Streiner, R Joffe. The adequacy of reporting randomized, controlled trials in the evaluation of antidepressants. Canadian journal of psychiatry Revue canadienne de psychiatrie. 1998;43(10):1026–30. .9868568
  3. AW Chan, K Krleza-Jeric, I Schmid, DG Altman. Outcome reporting bias in randomized trials funded by the Canadian Institutes of Health Research. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne. 2004;171(7):735–40. 10.1503/cmaj.104108615451835
  4. AW Chan, A Hrobjartsson, MT Haahr, PC Gotzsche, DG Altman. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. Jama. 2004;291(20):2457–65. 10.1001/jama.291.20.2457 .15161896
  5. J Higgins, S Green. Cochrane Handbook for Systematic Reviews of Interventions. Available from: Available from Vol. 5.0.1 Sept 2008.
  6. J Ma, W Liu, A Hunter, W Zhang. Performing meta-analysis with incomplete statistical information in clinical trials. BMC medical research methodology. 2008;8:5610.1186/1471-2288-8-5618706124
  7. TA Furukawa, C Barbui, A Cipriani, P Brambilla, N Watanabe. Imputing missing standard deviations in meta-analyses can provide accurate results. Journal of clinical epidemiology. 2006;59(1):7–10. 10.1016/j.jclinepi.2005.06.006 .16360555
  8. VC Marinho, JP Higgins, A Sheiham, S Logan. Fluoride toothpastes for preventing dental caries in children and adolescents. The Cochrane database of systematic reviews. 2003;(1):CD00227810.1002/14651858.CD002278 .12535435
  9. JW Stevens. A note on dealing with missing standard errors in meta-analyses of continuous outcome measures in WinBUGS. Pharmaceutical statistics. 2011;10(4):374–8. 10.1002/pst.491 .21394888
  10. N Wiebe, B Vandermeer, RW Platt, TP Klassen, D Moher, NJ Barrowman. A systematic review identifies a lack of standardization in methods for handling missing variance data. Journal of clinical epidemiology. 2006;59(4):342–53. 10.1016/j.jclinepi.2005.08.017 .16549255
  11. A Berhan, A Barker. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC endocrine disorders. 2013;13:5810.1186/1472-6823-13-5824341330
  12. A Berhan, Y Berhan. Efficacy of alogliptin in type 2 diabetes treatment: a meta-analysis of randomized double-blind controlled studies. BMC endocrine disorders. 2013;13:910.1186/1472-6823-13-923452780
  13. P Craddy, HJ Palin, KI Johnson. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: a systematic review and mixed treatment comparison. Diabetes therapy: research, treatment and education of diabetes and related disorders. 2014;5(1):1–41. 10.1007/s13300-014-0061-324664619
  14. GW Landman, GH de Bock, KJ van Hateren, PR van Dijk, KH Groenier, RO Gans, et alSafety and efficacy of gliclazide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PloS one. 2014;9(2):e8288010.1371/journal.pone.008288024533045
  15. P Rys, P Wojciechowski, S Siejka, P Malecki, L Hak, MT Malecki. A comparison of biphasic insulin aspart and insulin glargine administered with oral antidiabetic drugs in type 2 diabetes mellitus—a systematic review and meta-analysis. International journal of clinical practice. 2014;68(3):304–13. 10.1111/ijcp.12337 .24471814
  16. XP Yang, D Lai, XY Zhong, HP Shen, YL Huang. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. European journal of clinical pharmacology. 2014;70(10):1149–58. 10.1007/s00228-014-1730-x .25124541
  17. B Hemmingsen, JB Schroll, J Wetterslev, C Gluud, A Vaag, DP Sonne, et alSulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ open. 2014;2(3):E162–75. 10.9778/cmajo.2013007325295236
  18. ES Mearns, DM Sobieraj, CM White, WJ Saulsberry, CG Kohn, Y Doleh, et alComparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PloS one. 2015;10(4):e012587910.1371/journal.pone.012587925919293
  19. M Orme, P Fenici, ID Lomon, G Wygant, R Townsend, M Roudaut. A systematic review and mixed-treatment comparison of dapagliflozin with existing anti-diabetes treatments for those with type 2 diabetes mellitus inadequately controlled by sulfonylurea monotherapy. Diabetology & metabolic syndrome. 2014;6:7310.1186/1758-5996-6-7325006351
  20. DA Scott, KS Boye, L Timlin, JF Clark, JH Best. A network meta-analysis to compare glycaemic control in patients with type 2 diabetes treated with exenatide once weekly or liraglutide once daily in comparison with insulin glargine, exenatide twice daily or placebo. Diabetes, obesity & metabolism. 2013;15(3):213–23. 10.1111/dom.12007 .22958381
  21. T Wang, Z Gou, F Wang, M Ma, SD Zhai. Comparison of GLP-1 analogues versus sitagliptin in the management of type 2 diabetes: systematic review and meta-analysis of head-to-head studies. PloS one. 2014;9(8):e10379810.1371/journal.pone.010379825089625
  22. M Fournier, M Germe, K Theobald, GH Scholz, W Lehmacher. Indirect comparison of lixisenatide versus neutral protamine Hagedorn insulin as add-on to metformin and sulphonylurea in patients with type 2 diabetes mellitus. German medical science: GMS e-journal. 2014;12:Doc1410.3205/00019925332702
  23. K Esposito, P Chiodini, MI Maiorino, G Bellastella, A Capuano, D Giugliano. Glycaemic durability with dipeptidyl peptidase-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of long-term randomised controlled trials. BMJ open. 2014;4(6):e00544210.1136/bmjopen-2014-00544224916090
  24. Z Ren, K Zhu, H Kang, M Lu, Z Qu, L Lu, et alRandomized controlled trial of the prophylactic effect of urea-based cream on sorafenib-associated hand-foot skin reactions in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33(8):894–900. 10.1200/JCO.2013.52.9651. 10.1200/JCO.2013.52.965125667293
  25. Q Zhu, Y Tong, T Wu, J Li, N Tong. Comparison of the hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an Eastern or Western diet: a systematic meta-analysis. Clinical therapeutics. 2013;35(6):880–99. 10.1016/j.clinthera.2013.03.020 .23602502
  26. C Wang, J Mamza, I Idris. Biphasic vs basal bolus insulin regimen in Type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetic medicine: a journal of the British Diabetic Association. 2015;32(5):585–94. 10.1111/dme.12694 .25594251
  27. LJ Schmidt, W Habacher, T Augustin, E Krahulec, T Semlitsch. A systematic review and meta-analysis of the efficacy of lixisenatide in the treatment of patients with type 2 diabetes. Diabetes, obesity & metabolism. 2014;16(9):769–79. 10.1111/dom.12269 .24476092
  28. JA Hirst, AJ Farmer, A Dyar, TW Lung, RJ Stevens. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013;56(5):973–84. 10.1007/s00125-013-2856-623494446
  29. S Goring, N Hawkins, G Wygant, M Roudaut, R Townsend, I Wood, et alDapagliflozin compared with other oral anti-diabetes treatments when added to metformin monotherapy: a systematic review and network meta-analysis. Diabetes, obesity & metabolism. 2014;16(5):433–42. 10.1111/dom.12239 .24237939
  30. Y Zhang, J Hong, J Chi, W Gu, G Ning, W Wang. Head-to-head comparison of dipeptidyl peptidase-IV inhibitors and sulfonylureas—a meta-analysis from randomized clinical trials. Diabetes/metabolism research and reviews. 2014;30(3):241–56. 10.1002/dmrr.2482 .24123720
  31. M Katout, H Zhu, J Rutsky, P Shah, RD Brook, J Zhong, et alEffect of GLP-1 mimetics on blood pressure and relationship to weight loss and glycemia lowering: results of a systematic meta-analysis and meta-regression. American journal of hypertension. 2014;27(1):130–9. 10.1093/ajh/hpt196 .24263424
  32. YG Kim, S Hahn, TJ Oh, KS Park, YM Cho. Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes, obesity & metabolism. 2014;16(10):900–9. 10.1111/dom.12293 .24655583
  33. L Hou, T Zhao, Y Liu, Y Zhang. Efficacy and safety of sitagliptin compared with sulfonylurea therapy in patients with type 2 diabetes showing inadequately controlled glycosylated hemoglobin with metformin monotherapy: A meta-analysis. Experimental and therapeutic medicine. 2015;9(4):1528–36. 10.3892/etm.2015.227725780464
  34. X Cai, X Han, Y Luo, L Ji. Comparisons of the efficacy of alpha glucosidase inhibitors on type 2 diabetes patients between Asian and Caucasian. PloS one. 2013;8(11):e7942110.1371/journal.pone.007942124236131
  35. D Vasilakou, T Karagiannis, E Athanasiadou, M Mainou, A Liakos, E Bekiari, et alSodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Annals of internal medicine. 2013;159(4):262–74. 10.7326/0003-4819-159-4-201308200-00007 .24026259
  36. AC Tricco, J Antony, PA Khan, M Ghassemi, JS Hamid, H Ashoor, et alSafety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis. BMJ open. 2014;4(12):e00575210.1136/bmjopen-2014-00575225537781
  37. DB Rubin, N Schenker. Multiple imputation in health-care databases: an overview and some applications. Statistics in medicine. 1991;10(4):585–98. .2057657
  38. H Thiessen Philbrook, N Barrowman, AX Garg. Imputing variance estimates do not alter the conclusions of a meta-analysis with continuous outcomes: a case study of changes in renal function after living kidney donation. Journal of clinical epidemiology. 2007;60(3):228–40. 10.1016/j.jclinepi.2006.06.018 .17292016
  39. D Follmann, P Elliott, I Suh, J Cutler. Variance imputation for overviews of clinical trials with continuous response. Journal of clinical epidemiology. 1992;45(7):769–73. .1619456
The underlying source XML for this text is taken from The license for the article is Creative Commons Attribution 4.0 International. The main subject has been identified as maturity-onset diabetes of the young.