Article:Role of Hepatitis E Virus Infection in Acute-on-Chronic Liver Failure (6046156)

From ScienceSource
Jump to: navigation, search

This page is the ScienceSource HTML version of the scholarly article described at Its title is Role of Hepatitis E Virus Infection in Acute-on-Chronic Liver Failure and the publication date was 2018-06-28. The initial author is Mario Frias.

Fuller metadata can be found in the Wikidata link, which lists all authors, and may have detailed items for some or all of them. There is further information on the article in the footer below. This page is a reference version, and is protected against editing.

Converted JATS paper:

Journal Information

Title: BioMed Research International

Role of Hepatitis E Virus Infection in Acute-on-Chronic Liver Failure

  • Mario Frias
  • Pedro López-López
  • Antonio Rivero
  • Antonio Rivero-Juarez

Clinical Virology and Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain

Publication date (collection): /2018

Publication date (epub): 6/2018


Chronic liver disease (CLD) with a variety of causes is currently reported to be one of the main causes of death worldwide. Patients with CLD experience deteriorating liver function and fibrosis, progressing to cirrhosis, chronic hepatic decompensation (CHD), end-stage liver disease (ESLD), and death. Patients may develop acute-on-chronic liver failure (ACLF), typically related to a precipitating event and associated with increased mortality. The objective of this review was to analyze the role of acute hepatitis E virus (HEV) infection in patients with CLD, focusing on the impact of this infection on patient survival and prognosis in several world regions.


1. Introduction

Chronic liver disease (CLD) is a pathology characterized by continuous, progressive damage to the liver tissue [[1]]. Several conditions can cause this pathology, such as viral hepatitis (hepatitis C [HCV] and B [HBV]), metabolic disorders (Wilson's disease and nonalcoholic fatty liver), toxic or drug abuse (alcohol consumption), and autoimmune disorders [[2]]. Patients with CLD experience deterioration of liver function and fibrosis, progressing to cirrhosis, chronic hepatic decompensation (CHD), end-stage liver disease (ESLD), and finally death [[2]]. Various factors can shorten or accelerate this process of development (e.g., HIV infection) [[3]]. Likewise, some patients may develop acute-on-chronic liver failure (ACLF).

ACLF is an entity that has been defined differently in the West and East. Asian Pacific Association for the Study of Liver (APASL) defines ACLF as “acute hepatic insult manifesting as jaundice and coagulopathy complicated within 4 weeks by clinical ascites and/or encephalopathy in a patient with previously diagnosed or undiagnosed chronic liver disease/cirrhosis, and is associated with a high 28-day mortality” [[4]]. On the other hand, European association for the study of liver (EASL) and American association for the study of liver diseases (AASLD) define ACLF as “acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at 3 months due to multi-system organ failure” [[5]]. Moreover, others definitions have been proposed in order to establish a consensus [[6]]. Although there is no consistent definition of ACLF, all of them consider the hepatitis E virus infection as a precipitating event.

In this review, the role of acute hepatitis E virus (HEV) infection on ACLF was analyzed, focusing on the impact of this infection on patient survival and prognosis in several world regions.

2. Main Text

2.1. Impact of Acute HEV Infection on CLD in Asia

Asia is an HEV-endemic area and several outbreaks have been reported [[7]]. The four major HEV genotypes have been reported in this area [[8]]. Nevertheless, the majority of cases in India and China are due to HEV genotype 4, whereas the majority of cases in Japan are due to genotypes 3 and 4 [[9]]. The first report linking HEV infection to liver decompensation was in Pakistan [[10]]. In that study, 233 CLD patients were tested for hepatitis A (HAV) and HEV antibodies. Interestingly, the cause of sudden liver decompensation in all 4 patients with ACLF included in the study (100%) was HEV superinfection. Seroprevalence of HAV was considerably higher than the seroprevalence of HEV (97.8% and 17.5%), probably because 97% to 100% of patients with CLD in this highly endemic area have been immunized against HAV infection (the HAV vaccine has been available since 1999) [[11]]. In contrast, the rate of HEV immunization in patients is much lower. Accordingly, HEV infection could be an important trigger of liver decompensation in CLD patients in this area. An increasing number of studies in this setting have evaluated this association in HEV-endemic areas in Asia (summarized inTable 1).

The majority of studies have been conducted in India. The largest study was performed by Acharya et al. in a cohort of 107 cirrhotic patients [[12]]. Patients included in this study were classified into three groups: (i) cirrhotic patients with ACLF (n = 42), (ii) cirrhotic patients with previous CHD (n = 32), and (iii) stable cirrhotic patients with a Child-Turcotte-Pugh (CTP) score < 6 (n = 33). Thirty patients had detectable serum HEV-RNA at inclusion. The distribution of HEV-infected patients according to the three different study groups was as follows: 50% in Group 1 (21 of 42), 19% in Group 2 (6 of 32), and 10% in Group 3 (3 of 33). Consequently, in this study, the cause of liver failure in 50% of patients with ACLF was HEV infection. Of these 21 patients, mortality at week 4 of follow-up was 61.9% (n = 13), with 1-year mortality of 100%. By multivariate analysis, HEV infection was identified as a risk factor associated with mortality in ACLF (RR = 1.88), together with other clinical parameters, such as Child-Pugh score, renal failure, and sepsis. Another study performed in northern India found that the cause of ACLF in 66.1% of 121 patients was HEV infection [[13]]. In that study, 3-month mortality among HEV-infected patients was 43.8%. A study performed by Garg et al. analyzed 91 patients with a first ACLF and no previous history of liver decompensation. The cause of the insult to the liver was identified as HEV infection in 14 patients (15.3%) [[14]]. Kumar et al. identified a series of 48 patients with ACLF and HEV infection was noted in 14.5% of patients [[15]]. In another study performed in Delhi that included 42 patients with acute exacerbation of chronic hepatitis B (HBV) infection, HEV infection was detected in 18.6% [[16]]. Other studies enrolling smaller samples of patients identified liver failure as being due to HEV infection in 100% of CLD patients [[17], [18]]. In other studies, the percentage of liver decompensation due to HEV infection in India was considerably lower than that reported in previously studies. The study by Das et al. included patients with chronic HBV infection with liver decompensation, and HEV infection was identified as the cause of liver failure in 8.3% of patients (6 out of 72) [[19]]. In another study with 52 patients, the rate of ACLF caused by acute HEV infection was 9.6% [[20]]. In a study performed by Museja et al. in Chandigarh (a city in northern India), the cause of acute deterioration of liver function was identified as HEV in only 8 (8%) of 100 patients included with ACLF [[21]]. In another study conducted by the same authors, only 3.9% of patients with ACLF (4 of 102) were HEV-infected at liver failure [[22]]. Differences between studies could be related to the year/months when the study was performed, a concomitant HEV outbreak at the same time as the study, or HEV subtype. Nevertheless, strong evidence suggests that HEV is a major cause of liver failure in patients diagnosed with CLD in India, with an overall rate of 27.3% (Table 1). Finally, there are two studies of pediatric patients carried out in India. The first included 36 children with acute-on-chronic liver disease (ACLD), 17 of whom fulfilled ACLF criteria, and HEV infection was identified in 63.8% of these patients [[23]]. In the second, the presence of ACLF due to HEV infection was confirmed in 3 of 31 patients included (9.6%) [[24]].

Three studies conducted in South China should be highlighted. First, Zhang et al. conducted a study whose main objective was to evaluate the impact of hepatitis A virus (HAV) superinfection or HEV superinfection on patients with chronic HBV infection [[25]]. A total of 188 patients were included: 52 (27.6%) with HAV superinfection and 136 (72.4%) with HEV superinfection. The rate of liver failure observed was higher among HBV patients with HEV (39.7%) than with HAV (11.5%) (p = 0.002). Furthermore, the mortality rate for patients with HEV was also higher than in those infected with HAV (33.8% versus 1.9%; p < 0.001). Second, Ke et al. performed a study whose main objective was to determine the etiology of fatal liver failure in patients with chronic HBV infection. Of the 107 patients analyzed, HEV infection was identified as the cause of liver insult in 80 patients (74.7%) [[26]]. Lastly, another study by Zhang et al. explored the risk factors for adverse clinical outcomes in acute HEV infection. Of 512 patients with acute HEV infection included in the study, 41.2% had the infection without underlying CLD. However, 58.8% had acute-on-chronic liver disease and the liver disease-related mortality rate was 11.3% [[27]].

Several studies with small samples of patients have analyzed the impact of HEV infection on CLD in other Asian countries. In Bangladesh, a study performed by Mathab et al. identified HEV infection as the cause in 21.7% of 69 ACLF patients included [[28]]. Similarly, 14 of 32 cirrhotic patients with liver decompensation (43.75%) included in another study performed in Bangladesh had anti-HEV IgM antibodies [[29]]. In a study carried out in Vietnam of 382 cirrhotic patients due to HBV, an association was found between HEV infection and a higher Child-Pugh score [[30]]. Interestingly, the viral strain isolated in that study was consistent with HEV genotype 3. Two series of cases reported in Nepal revealed 100% HEV infection in 19 patients with ACLF [[31], [32]]. Finally, four cases of ACLF caused by HEV infection have been reported in Pakistan [[10]].

2.2. Impact of Acute HEV Infection on CLD in Europe

Previously, HEV infection in Europe was associated with travelers or imported cases [[33]]. An increasing number of studies have demonstrated that while Europe is not home to HEV outbreaks like those found in Asia or Central America, the prevalence and numbers of cases of HEV infection are steadily increasing [[34], [35]]. The main route of transmission in European countries is via the consumption of raw or undercooked meat (mainly pork). While the prevalence of HEV infection has been widely studied in both the general and special populations (such as HIV-infected patients and transplant recipients) [[36], [37]], the impact of infection on CLD has not so far been well studied in this region in contrast with Asian countries.

The first cases of liver decompensation in cirrhotic patients in Europe due to autochthonous HEV infection were documented in the United Kingdom in 2005-2006 [[38]]. In that study, 3 CLD patients developed liver failure due to HEV genotype 3 infection; 2 of the patients died (both cirrhotic) and 1 developed encephalopathy but recovered. Another case described in the same cohort involved a 59-year-old man with undiagnosed liver cirrhosis who acquired HEV genotype 3 infection [[39]]. The patient developed subacute liver failure with grade 1-2 encephalopathy and died due to infection. Subsequent data in another British study have been reported, including further cases of acute HEV infection, although no cases of acute liver failure or death have been reported in CLD patients [[40]]. In France, 7 cases (6 with a known history of CLD) of acute hepatitis, all HEV genotype 3, with encephalopathy have been reported [[41]]. Fulminant acute hepatitis was the cause of death in all but two cases. When the risk factors associated with the severe form of acute HEV were compared with a control cohort with a milder form of acute HEV infection, only concomitant CLD was identified. In another study, ninety-three cases of acute hepatitis E acquired in Switzerland have been documented. Four of these patients had experienced previous episodes of decompensation. Two of them had liver failure with a fatal outcome [[42]]. The etiology of decompensation was analyzed in a British/French cohort including 343 patients with decompensated chronic liver disease [[43]]. HEV infection was the trigger insult in 11 patients (3.2%), 3 (27%) of whom died in follow-up due to the infection. In terms of mortality however HEV infection was not statistically significant among patients who developed liver decompensation due to other causes. Another French study evaluated the impact of HEV infection on mortality rate in patients with acute alcoholic hepatitis [[44]]. The overall mortality rate in the 84 patients included was 28.6% and did not vary between patients with non-HEV infection (28.3%), past HEV infection (29%), and active HEV infection (33%). Finally, a longitudinal prospective study including HIV-infected patients conducted in Spain analyzed the impact of HEV acute infection on cirrhotic patients [[45]]. In that study, 83 patients diagnosed with liver cirrhosis were followed up for 1 year. During the study period, 8 (9.6%) patients experienced HEV infection. The presence of liver decompensation was more common in the HEV-infected patients (2/8; 25%) than in the uninfected patients (2/75; 2.6%) (p = 0.023).

Although the number of studies evaluating this association is limited in Europe, two studies have indirectly evaluated it. In 1985, Nanji and French reported that there was a correlation between national pork consumption (including 17 developed countries) and mortality from CLD [[46]]. These data were reevaluated and confirmed in 2010 by Dalton et al. [[47]], who evaluated factors associated with CLD mortality in 18 developed countries (including 14 European countries). They found that consumption of pig meat was an independent risk factor for CLD mortality, which also correlated with alcohol intake. There are several hypotheses for this association, although HEV transmission should also be taken into consideration.

2.3. Impact of Acute HEV Infection in CLD in Africa

In Africa, two studies have analyzed the impact of HEV infection on liver failure in CLD patients. Both studies have been based on APASL definition for ACLF. The first study was conducted in Egypt and included 100 patients with ACLF and 80% of survival rates [[48]]. Of these, HEV-RNA was detected in 13 (13%) patients. These patients were cirrhotic, diagnosed with hepatocellular carcinoma, and/or awaiting liver transplant with jaundice. In the second study, performed in Gambia, 40 ACLF patients were included and compared with 71 compensated cirrhotic patients [[49]]. Of the ACLF patients, 100% presented ascites, 25% encephalopathy, and 27.5% gastrointestinal bleeding. HEV infection was not detected in both groups. In that study, therefore, HEV infection was not related to ACLF.

2.4. Impact of Acute HEV Infection in CLD in America

Two studies and one case report have been reported in the USA [[50]]. The first study evaluated 115 patients with chronic HCV infection diagnosed with cancer (cirrhosis: n = 47). Anti-HEV IgM was not detected in any patient. In the second study by Fontana et al., only 3 patients (0.4%) in a cohort of 681 ACLF patients exhibited anti-HEV IgM [[51]]. During follow-up (8 serum samples tested), HEV-RNA was not amplified in any of the patients. Finally, the case report documented fatal hepatic decompensation due to HEV genotype 4 infection in a transplant recipient [[52]]. The patient probably acquired the infection in Hong Kong during a 7-week stay there and died with chronic HEV infection following accelerated progression of cirrhosis.

3. Conclusion and Perspectives

Globally, HEV infection negatively impacts the survival and prognosis of patients with CLD. This association is more apparent in Asia than in European, African, or American countries. This difference could be mainly related to the presence of viral genotypes/subtypes in each zone. The impact of HEV genotype 3 on the prognosis and outcome of CLD is controversial. In Europe, where genotype 3 is endemic, the number of reported cases of liver decompensation due to HEV infection is low (n = 23; rate of liver decompensation = 5.7%). In European countries, the impact of HEV infection on the prognosis and survival of CLD patients seems to be limited (n = 3; liver decompensation rate = 0.4%). Despite these observations, clinicians should consider HEV infection in European and American patients with CLD with a sudden deterioration of liver function, independently of their travel history.

In China, a hepatitis E vaccine has recently demonstrated high short-term and long-term protective efficacy [[53], [54]]. Vaccination could therefore significantly reduce transmission of this disease and so improve the prognosis of CLD patients in or from endemic areas. This vaccine has not yet been tested in certain populations, including pregnant women and the immunosuppressed cases. Consequently, the World Health Organization (WHO) does not recommend general vaccination at this time, and universal vaccination is considered exclusively during hepatitis outbreaks [[55]]. Nevertheless, the recommendations for vaccination in CLD patients in this setting may be revised following suggestions by several experts because of the overall high rate of decompensation due to HEV infection (33.9%) observed in studies conducted in these areas.



This work was supported by the Spanish AIDS Research Network RD16/0025/0034-ISCIII-FEDER, Fundación Progreso y Salud de la Junta de Andalucía (0187/2013), and the Fundación para la Investigación en Salud del Instituto de Salud Carlos III (PI15/01017). Antonio Rivero is the recipient of a research support grant from the Consejería de Salud de la Junta de Andalucía (A-0025-2016).


  1. S. L. FriedmanMechanism of hepatic fibrogénesisGastroenterology20081341655166918471545
  2. D. L. LongoA. S. FauciD. L. KasperS. L. HauserJ. JamesonJ. LoscalzoHarrison's Principles of Internal Medicine201218thNew York, NY, USAMcGraw-Hill
  3. A. Y. KimR. T. ChungCoinfection with HIV-1 and HCV-A One-two punchGastroenterology2009137379581410.1053/j.gastro.2009.06.0402-s2.0-6954911912919549523
  4. S. K. SarinC. K. KedarisettyZ. AbbasAcute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014Hepatology International20148445347110.1007/s12072-014-9580-22-s2.0-8491983560626202751
  5. J. C. OlsonJ. A. WendonD. J. KramerIntensive care of the patient with cirrhosisHepatology2011545186418722-s2.0-8005503089410.1002/hep.2462221898477
  6. A. DusejaS. P. SinghToward a Better Definition of Acute-on-Chronic Liver FailureJournal of Clinical and Experimental Hepatology2017732622652-s2.0-8501989617610.1016/j.jceh.2017.05.00228970714
  7. E. H. TeshaleD. J. HuS. D. HolmbergThe two faces of hepatitis E virusClinical Infectious Diseases20105133283342-s2.0-7795469202310.1086/65394320572761
  8. J. H. HoofnagleK. E. NelsonR. H. PurcellHepatitis EThe New England Journal of Medicine2012367131237124410.1056/nejmra12045122-s2.0-8486676309823013075
  9. N. KamarR. BendallF. Legrand-AbravanelHepatitis EThe Lancet201237998352477248810.1016/s0140-6736(11)61849-72-s2.0-84862896570
  10. S. S. HamidM. AtiqF. ShehzadHepatitis E virus superinfection in patients with chronic liver diseaseHepatology20023624744782-s2.0-003632815110.1053/jhep.2002.3485612143058
  11. S. K. AcharyaY. BatraA. SarayaS. HazariR. DixitK. KaurVaccination against hepatitis A virus (HAV) is not necessary for Indian patients with chronic liver disease. Results of a serological studyThe National Medical Journal of India20021526726812502138
  12. S. Kumar AcharyaP. Kumar SharmaR. SinghHepatitis E virus (HEV) infection in patients with cirrhosis is associated with rapid decompensation and deathJournal of Hepatology20074633873942-s2.0-3384659051210.1016/j.jhep.2006.09.01617125878
  13. Y. R. KrishnaV. A. SaraswatK. DasClinical features and predictors of outcome in acute hepatitis A and hepatitis E virus hepatitis on cirrhosisLiver International20092933923982-s2.0-5984911300510.1111/j.1478-3231.2008.01887.x19267864
  14. H. GargA. KumarV. GargP. SharmaB. C. SharmaS. K. SarinClinical profile and predictors of mortality in patients of acute-on-chronic liver failureDigestive and Liver Disease20124421661712-s2.0-8485574052210.1016/j.dld.2011.08.02921978580
  15. A. KumarK. DasP. SharmaV. MehtaB. C. SharmaS. K. SarinHemodynamic studies in acute-on-chronic liver failureDigestive Diseases and Sciences20095448698782-s2.0-6324913414810.1007/s10620-008-0421-918688717
  16. M. KumarB. C. SharmaS. K. SarinHepatitis E virus as an etiology of acute exacerbation of previously unrecognized asymptomatic patients with hepatitis B virus-related chronic liver diseaseJournal of Gastroenterology and Hepatology20082368838872-s2.0-4494914739510.1111/j.1440-1746.2007.05243.x18070014
  17. A. KumarR. AggarwalS. R. NaikHepatitis E virus is responsible for decompensation of chronic liver disease in an endemic regionIndian Journal of Gastroenterology200423596215176538
  18. J. RamachandranC. EapenG. KangHepatitis E superinfection produces severe decompensation in patients with chronic liver diseaseJournal of Gastroenterology and Hepatology200419213413810.1111/j.1440-1746.2004.03188.x14731121
  19. K. DasBC. SharmaSK. SarinCauses and profile of acute decompensation in hepatitis B related chronic liver disease in IndiaIndian Journal of Gastroenterology200524767915879658
  20. A. K. JhaS. NijhawanR. R. RaiS. NepaliaP. JainA. SuchismitaEtiology, clinical profile, and inhospital mortality of acute-on-chronic liver failure: A prospective studyIndian Journal of Gastroenterology20133221081142-s2.0-8487610923810.1007/s12664-012-0295-923526372
  21. A. DusejaN. S. ChoudharyS. GuptaR. K. DhimanY. ChawlaAPACHE II score is superior to SOFA, CTP and MELD in predicting the short-term mortality in patients with acute-on-chronic liver failure (ACLF)Journal of Digestive Diseases20131494844902-s2.0-8488163918610.1111/1751-2980.1207423692973
  22. A. DusejaY. K. ChawlaR. K. DhimanA. KumarN. ChoudharyS. TanejaNon-hepatic insults are common acute precipitants in patients with acute on chronic liver failure (ACLF)Digestive Diseases and Sciences20105511318831922-s2.0-7814934882110.1007/s10620-010-1377-020721624
  23. B. JagadisanA. SrivastavaS. K. YachhaU. PoddarAcute on chronic liver disease in children from the developing world: Recognition and prognosisJournal of Pediatric Gastroenterology and Nutrition201254177822-s2.0-8485534701210.1097/MPG.0b013e318228d7da21691224
  24. J. LalB. R. ThapaP. RawalR. K. RathoK. SinghPredictors of outcome in acute-on-chronic liver failure in childrenHepatology International2011526936972-s2.0-7995627528610.1007/s12072-010-9217-z21484110
  25. X. ZhangW. KeJ. XieZ. ZhaoD. XieZ. GaoComparison of effects of hepatitis e or A viral superinfection in patients with chronic hepatitis BHepatology International2010436156202-s2.0-7795809693010.1007/s12072-010-9204-421063485
  26. W.-M. KeX.-J. LiL.-N. YuEtiological investigation of fatal liver failure during the course of chronic hepatitis B in southeast ChinaJournal of Gastroenterology20064143473512-s2.0-3374481038110.1007/s00535-005-1781-y16741614
  27. S. ZhangC. ChenJ. PengInvestigation of underlying comorbidities as risk factors for symptomatic human hepatitis E virus infectionAlimentary Pharmacology & Therapeutics20174557017132-s2.0-8501141797110.1111/apt.1393828078736
  28. M.-A. MahtabS. RahmanM. KhanF. KarimHepatitis E virus is a leading cause of acute-on-chronic liver disease: Experience from a tertiary centre in BangladeshHepatobiliary & Pancreatic Diseases International20098150522-s2.0-6054910048319208515
  29. M. A. MahtabS. RahmanM. KhanHepatitis E virus is a leading cause for decompensation of liver in patients with cirrhosis in BangladeshHungarian Medical Journal20082135145
  30. N. X. HoanH. V. TongN. HechtHepatitis E Virus Superinfection and Clinical Progression in Hepatitis B PatientsEBioMedicine2015212208020862-s2.0-8495888979610.1016/j.ebiom.2015.11.02026844288
  31. K. C. SudhamshuEffects of hepatitis E virus infection in patients with chronic liver diseaseJournal of Gastroenterology and Hepatology2006211317
  32. S. KcA. K. MishraR. ShresthaHepatitis E virus infection in chronic liver disease causes rapid decompensation.JNMA; journal of the Nepal Medical Association2006451612122152-s2.0-4444911631217160100
  33. S. IjazE. ArnoldM. BanksNon-travel-associated hepatitis E in England and Wales: demographic, clinical, and molecular epidemiological characteristicsThe Journal of Infectious Diseases200519271166117210.1086/4443962-s2.0-2544445694616136458
  34. Public Health England. Hepatitis E: guidance, data and analysis
  35. E. DotingHepatitis E virus genotype 3 – a health concern in the NetherlandsProceedings of the 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID)April 2016Amsterdan, Netherlands
  36. A. Rivero-JuarezL. Martinez-DueñasA. Martinez-PeinadoHigh hepatitis E virus seroprevalence with absence of chronic infection in HIV-infected patientsInfection20157066246302-s2.0-8492908094310.1016/j.jinf.2014.10.016
  37. P. BehrendtE. SteinmannM. P. MannsH. WedemeyerThe impact of hepatitis e in the liver transplant settingJournal of Hepatology2014616141814292-s2.0-8492271476910.1016/j.jhep.2014.08.04725195557
  38. H. DaltonS. HazeldineM. BanksS. IjazR. BendallLocally acquired hepatitis E in chronic liver diseaseThe Lancet20073699569p. 12602-s2.0-3414715971810.1016/S0140-6736(07)60595-9
  39. G. L. LockwoodS. Fernandez-BarredoR. BendallM. BanksS. IjazH. R. DaltonHepatitis e autochthonous infection in chronic liver diseaseEuropean Journal of Gastroenterology & Hepatology20082088008032-s2.0-5214909209810.1097/MEG.0b013e3282f1cbff18617787
  40. H. R. DaltonW. StableforthP. ThurairajahAutochthonous hepatitis e in Southwest England: natural history, complications and seasonal variation, and hepatitis e virus IgG seroprevalence in blood donors, the elderly and patients with chronic liver diseaseEuropean Journal of Gastroenterology & Hepatology200820878479010.1097/MEG.0b013e3282f5195a2-s2.0-5274908645018617784
  41. J. M. PéronC. BureauH. PoirsonFulminant liver failure from acute autochthonous hepatitis E in France: Description of seven patients with acute hepatitis E and encephalopathyJournal of Viral Hepatitis20071452983032-s2.0-3424712182610.1111/j.1365-2893.2007.00858.x17439518
  42. M. FragaC. DoerigH. MoulinHepatitis E virus as a cause of acute hepatitis acquired in SwitzerlandLiver International20172-s2.0-85028932521
  43. H. Blasco-PerrinR. G. MaddenA. StanleyHepatitis e virus in patients with decompensated chronic liver disease: A Prospective UK/French StudyAlimentary Pharmacology & Therapeutics201542557458110.1111/apt.133092-s2.0-8493849266526174470
  44. S. Haim-BoukobzaA. CoillyM. SebaghHepatitis E infection in patients with severe acute alcoholic hepatitisLiver International201410.1111/liv.12610
  45. A. Rivero-JuarezF. Cuenca-LopezA. Martinez-PeinadoIncidence of Hepatitis E Virus in HIV-Infected Patients: A Longitudinal Prospective Study709Proceedings of the 22th Conference on Retroviruses and Opportunistic Infections (CROI)February, 2014Seattle, Wash, USA2326
  46. AA. NanjiWS. FranchRelationship between pork consumption and cirrosis19851681-683
  47. H. R. DaltonR. P. BendallC. PritchardW. HenleyD. MelzerNational mortality rates from chronic liver disease and consumption of alcohol and pig meatEpidemiology and Infection201013821741822-s2.0-7494911363110.1017/S095026880999030619563698
  48. Z. M. El SayedW. OthmanRole of hepatitis E infection in acute on chronic liver failure in Egyptian patientsLiver International20113171001100510.1111/j.1478-3231.2011.02521.x2-s2.0-7996009589721733089
  49. Y. ShimakawaH. F. NjaiK. TakahashiHepatitis e virus infection and acute-on-chronic liver failure in West Africa: A case-control study from the GambiaAlimentary Pharmacology & Therapeutics20164333753842-s2.0-8495530823210.1111/apt.1348426623967
  50. A. KyvernitakisM. TaremiB. BlechaczImpact of hepatitis E virus seropositivity on chronic liver disease in cancer patients with hepatitis C virus infectionHepatology Research20154511114611512-s2.0-8495890943310.1111/hepr.1246025488194
  51. R. J. FontanaR. E. EngleS. ScaglioneThe role of hepatitis E virus infection in adult Americans with acute liver failureHepatology2016646187018802-s2.0-8497709074110.1002/hep.2864927215797
  52. R. B. PerumpailA. AhmedJ. P. HigginsFatal accelerated cirrhosis after imported HEV genotype 4 infectionEmerging Infectious Diseases2015219167916812-s2.0-8493955462610.3201/eid2109.15030026291424
  53. M. P. ShresthaR. M. ScottD. M. JoshiSafety and efficacy of a recombinant hepatitis E vaccineThe New England Journal of Medicine200735698959032-s2.0-3384735827810.1056/NEJMoa06184717329696
  54. J. ZhangX. ZhangS. HuangLong-term efficacy of a hepatitis E vaccineThe New England Journal of Medicine20153721091492210.1056/NEJMoa140601125738667
  55. World Health Organization Hepatitis E vaccine position paper
The underlying source XML for this text is taken from The license for the article is Creative Commons Attribution 4.0 International. The main subject has been identified as hepatitis E.